Новости про суперкомпьютеры

NVIDIA представила суперкомпьютер Jetson TX2

В ходе Open Compute Summit, прошедшего в калифорнийском Сан-Хосе, компания NVIDIA представила крошечный суперкомпьютер Jetson TX2, который предлагает «вычисления для искусственного интеллекта на передовой».

Система размером с кредитную карту предназначена для промышленных роботов, коммерческих дронов и смарт камер. Новая версия обладает вдвое большей производительностью, по сравнению с предшественником, при энергопотреблении лишь 7,5 Вт.

Компьютер основан на GPU архитектуры Pascal, содержит 8 ГБ памяти LPDDR4, eMMC накопитель объёмом 32 ГБ, модули связи 802.11ac WLAN и Bluetooth. Работает машина под управлением Linux for Tegra. Также Jetson TX2 поставляется с JetPack 3.0, которую NVIDIA называет «наиболее конкурентоспособной SDK для вычислений в области AI, что облегчает интеграцию искусственного интеллекта в широкий спектр приложений».

Дипу Талла, вице-президент и генеральный менеджер бизнеса Tegra в NVIDIA заявил: «Jetson TX2 обеспечивает мощные возможности AI на передовой, позволяя создавать новый класс интеллектуальных машин. Эти устройства обеспечат интеллектуальный анализ видео, что сделает наши города умнее и безопаснее, создание роботов нового типа, которые оптимизируют производство, и нового взаимодействия, которое сделает удалённую работу более плодотворной».

Наборы разработчиков NVIDIA Jetson TX2 начнут поставляться 14 марта.

NVIDIA представила самый энергоэффективный суперкомпьютер

Известный производитель графических процессоров, компания NVIDIA, представила своё новое вычислительное решение DGX SaturnV, которое по мнению компании является наиболее энергоэффективным суперкомпьютером на планете.

Система DGX SaturnV содержит 63 488 ГБ оперативной памяти, 60 512 ядер Intel Xeon E5-2698v4, 125 плат NVIDIA DGX-1 и 100 GPU. По уверению инженеров, DGX SaturnV является 28-м в мире по скорости работы, однако при этом он в 2,3 раза более эффективен, чем Camphore 2, суперкомпьютер, с производительностью равной Xeon Phi Knights Landing.

Компьютер был построен для программы искусственного интеллекта NVIDIA. При этом технология даст огромное преимущество любой компании.

«Поэтому мы собрали самый эффективный в мире и один из самых мощных суперкомпьютеров, чтобы оказать помощь в нашей работе», — отмечена компания.

Суперкомпьютер SaturnV помогает NVIDIA в создании ПО для автомобильного автопилота, который является ключевой частью платформы NVIDIA DRIVE PX 2 для автоматического вождения. Также компания занята обучением нейронной сети для понимания конструирования чипсета и крупномасштабной интеграции. В результате, инженеры компании могут работать быстрее и эффективнее. «Да, мы используем GPU, которые помогают нам создавать GPU». Представитель отметил: «Более важно, что мощь SaturnV даст нам возможность обучать и создавать новые сети глубокого обучения быстрее».

ARM включается в гонку суперкомпьютеров

Разработчик микропроцессоров ARM решил вступить в конкурентную борьбу с IBM, Intel и NVIDIA на рынке суперкомпьютеров, анонсировав «масштабируемое векторное расширение» (Scalable Vector Extensions — SVE), технологию, разработанную для архитектуры ARMv8-A.

Данная архитектура уже используется в суперкомпьютере Post-K, который изготавливает Fujitsu для японского института RIKEN. Эта машина, к моменту её запуска в 2020 году, должна стать самым производительным компьютером, демонстрируя скорость обработки в 1000 петафлопс.

Технология SVE была описана в ходе конференции Hot Chips в Купертино. Она способна поддерживать вектора длиной от 128 до 2048 бит. Она предназначена для производителей суперкомпьютеров и позволяет облегчить использование продуктов ARM для построения мощных вычислительных систем. Технология является гибким расширением инструкций ARM, которое позволяет перенести расчёт векторов с программного уровня на аппаратный.

В компании полагают, что модель облачных расчётов будет требовать высокопроизводительных систем, где наиболее мощные суперкомпьютерные процессоры не будут обладать выдающейся производительностью. Отмечается, что уже сейчас десятка самых быстрых суперкомпьютеров работает с CPU частотой от 1,45 ГГц до 2,6 ГГц, а высокая производительность достигается за счёт большого числа ядер и масштабных связей между ними, а не за счёт высокой производительности отдельных компонентов.

Квантовый компьютер уже в 100 миллионов раз быстрее обычных ПК

Многие люди воспринимают квантовый компьютер как священный Грааль безграничной производительности. И хотя нам пока очень далеко до многофункциональных бытовых квантовых компьютеров, первые результаты, полученные на квантовом компьютере D-Wave 2X, впечатляют, ведь он оказался быстрее обыкновенных кремниевых чипов в 100 миллионов раз.

Первый в мире квантовый компьютер 2X расположен в исследовательском центре Амеса, принадлежащем NASA, а эксплуатируется машина специалистами Google. Пока компьютер не готов к запуску игр AAA класса, однако в вычислительных сценариях с 1000 бинарных переменных, квантовый отжиг способен превзойти симуляцию квантового отжига на традиционном оборудовании в 100 миллионов раз. И это цифра может быть знаковой для понимания человеком скорости работы квантовых систем.

И хотя квантовые вычисления помогут учёным во многих областях, его разработка очень нелегка. Джон Мартинис, глава аппаратного подразделения Google отметил: «Я могу сказать, что построение квантового компьютера — это очень, очень тяжело, так что, прежде всего, мы просто хотим заставить его работать и не беспокоимся о цене или размере или чём-то ещё».

Сейчас компьютер D-Wave 2x занимает небольшую комнату, однако в Google отметили, что в былые времена компьютеры весили несколько тонн и занимали огромные помещения, через 40 лет превратившись в компактные высокопроизводительные системы.

AMD продвигает инициативу Boltzmann

Компания AMD основала новую программу под названием Boltzmann Initiative, которая использует гетерогенную архитектуру системы для объединения CPU и GPU от AMD с целью увеличения компьютерной эффективности.

Сообщается, что первый этап подготовки системы уже завершён. Вся инициатива включает Heterogeneous Compute Compiler (HCC), драйвер для Linux и инфраструктуру исполнения HSA для кластеров, инструменты High Performance Computing (HPC) и Heterogeneous-compute Interface for Portability (HIP), для портирования приложений для CUDA на C++.

Компания AMD надеется, что её новые инструменты увеличат производительность приложений в широком спектре задач, от машинного обучения до молекулярной динамики и от нефтяной и газовой отрасли до визуальных эффектов и компьютерных изображений.

По словам Джима Белка, солидера департамента США Цента соконструирования экзаскалярной энергии в экстремальных материалах, новый HCC C++ компилятор является ключевым инструментом для разработчиков, который позволит облегчить и эффективно применять аппаратные ресурсы в гетерогенных системах. Компилятор обеспечивает упрощённую разработку посредством исполнения единого кода, записанного для CPU и GPU в одном файле.

NVIDIA предсказывает общедоступность суперкомпьютеров

В ходе недавней конференции в Остине, штат Техас, исполнительный директор NVIDIA Дзень-Хсунь Хуан рассказал, что видит широкие возможности для распространения суперкомпьютеров во многих отраслях промышленности.

Хуан пояснил, что суперкомпьютерные технологии хорошо продвигаются за пределы традиционных суперкомпьютерных систем, и технологии GPU станут частью будущих технологий, таких как автономные транспортные средства и персональные роботизированные помощники. Компания NVIDIA уже активно работает в этих отраслях, предложив автомобильный компьютер NVIDIA Drive PX и модуль машинного обучения Jetson TX1.

За последние пару лет графические процессоры нашли своё применение во многих суперкомпьютерах. По словам NVIDIA, использование GPU акселераторов в списке top500 суперкомпьютеров растёт ежегодно на 50%, а графический процессор Tesla использован в 23 из 24 новых суперкомпьютерах с GPGPU ускорением.

В будущем машинное обучение увеличит спрос на GPU ещё больше. Машинное обучение является «первоочередным применением высокопроизводительных вычислений для потребителей» — отметил Хуан. «Технология позволит технологии стать автономной в сложности реального мира и станет инструментом для производства автономных транспортных средств и машин, подобных персональным роботам-помощникам».

Процессор EHP AMD получит до 32 ядер

Компания AMD опубликовала информацию о своём новом экзаскалярном гетерогенном процессоре (Exascale Heterogenous Processor — EHP), который предназначен для суперкомпьютеров.

По сути EHP представляет собой традиционный APU, только изготовленный в большем масштабе. Новый процессор будет родственен недавно выпущенному GPU Fiji с собственным контроллером и памятью на ядре.

Непосредственно чип будет включать различные компоненты. Среди них будет набор вычислительных ядер, блок GPGPU, всё это будет подключено к встроенному контроллеру и оснащено до 32 ГБ памяти HBM2, которая также будет поставляться в общем пакете. Что касается CPU, то отмечается, что чип будет включать 32 ядра архитектуры Zen, заключённых в 8 четырёхъядерных блоков.

Надо отметить, что объединение CPU, GPU с GPGPU функционалом и быстрой памятью с широкой шиной должно обеспечить отменную производительность такому решению. Первые инженерные образцы EHP компания планирует изготовить в 2016—17 годах.

NVIDIA выпустила Tesla K80

Компания NVIDIA анонсировала Tesla K80, новый двухчиповый ускоритель GPGPU для применения в расчётах с высокой производительностью.

В карте установлены два процессора GK210 семейства Kepler, что в сумме даёт 4992 ядра CUDA. На плате разведена шина памяти GDDR5 шириной 384 бита, которая передаёт данные на 24 ГБ памяти. Максимальная пропускная способность ускорителя K80 составляет 480 ГБ/с. NVIDIA обещает, что в операциях обычной точности производительность карты составит 8,74 терафлопса, а при двойной точности — 2,91 терафлопса.

Разработчики уверяют, что K80 обеспечивает вдвое большую производительность, по сравнению с одночиповым решением K40. Кроме того, этот ускоритель довольно скромно относится к энергоснабжению. Так, TDP K80 составляет 300 Вт, или по 150 Вт на GPU, в то время как K40 рассеивает 235 ватт тепла. Примечательно, что K80 имеет пассивное охлаждение, полностью полагаясь на эффективность вентиляторов шасси.

Несмотря на столь высокую эффективность, обозреватели полагают, что ожидать потребительскую версию K80 не стоит, ведь в отличие от рынка HPC, бытовой рынок уже перешёл на поколение Maxwell, таким образом, GK210 должен стать первым GPU компании, который не найдёт своего решения на потребительском уровне.

Intel рассказала о процессоре Knights Landing

В ходе международной конференции по суперкомпьютерам в немецком Лейпциге, компания Intel представила некоторые детали о новых суперкомпьютерных чипах, получивших название Knights Landing.

Высокая производительность этих чипов была продемонстрирована на этом же мероприятии год назад, но тогда было лишь объявлено о том, что его будут производить по 14 нм техпроцессу. В этом году Intel сообщила, что чип будет иметь архитектуру Silvermont и будет способен выполнять расчёты со скоростью до 3 терафлопс, и что самое важное, для взаимосвязи будет использовать Omni Scale.

О том, что же такое Omni Scale, пока известно крайне мало, но в Intel говорят, что это будет масштабируемая, нацеленная на будущее платформа, которая будет поддерживать абсолютно всё, от PC-адаптеров, новых свитчей, до собственных фотонных схем Intel и открытых программных инструментов. Таким образом, по словам гиганта электроники, проблемы с ограниченной пропускной способностью будут навсегда решены.

Что касается памяти, то чип получит 16 ГБ стэковой памяти изготовленной по технологии Micron Hybrid Memory Cube с применением связей Through Silicon Via. По мнению разработчиков, такой подход обеспечит пятикратную скорость, по сравнению с DDR4.

Сколько ядер будет в новом чипе, пока не сообщалось, но по слухам, их будет насчитываться 72 штуки.

Ожидается, что процессоры Xeon Phi Knights Landing будут поставляться коммерческим потребителям со второй половины 2015 года.

NVIDIA представила ускоритель Tesla K40

В ходе конференции SC13 компания NVIDIA представила самый производительный в мире видеоускоритель Tesla K40, сделав это вслед за AMD Firepro S10000 12 GB.

Как и положено ускорителям Tesla, он предназначен для суперкомпьютеров и он на целых 40% превышает по производительности Tesla K20X. Кроме того, этот ускоритель в 10 раз быстрее самого быстрого на сегодня CPU. Таким образом, ускоритель Firepro S10000 12 GB пробыл на вершине всего несколько дней.

«GPU ускорители стали мейнстрим продуктом в высокопроизводительных ПК и суперкомпьютерах, позволяя инженерам и учёным создавать новшества и делать научные открытия», — заявил Сумит Гупта, главный менеджер NVIDIA по продуктам ускоренных вычислений.

Что касается аппаратной части, то K40 получил 2880 ядер CUDA с базовой частотой 745 МГц и до 875 МГц в режиме Boost, в то время как прошлое поколение, K20X, имело 2688 ядер частотой 732 МГц. В новой плате также используется более быстрая память GDDR5 частотой 3 ГГц, объём которой также как и противоборствующего лагеря составляет 12 ГБ.

В пресс-релизе компания указала, что  «ускоритель Tesla K40 обходит остальные ускорители по двум главным показателям вычислительной производительности: 4,29 терафлопса с обычной точностью и 1,43 терафлопса пиковой производительности с двойной точностью». Надо сказать, что это не совсем правда, поскольку AMD удалось сделать свой ускоритель с производительностью в 1,48 терафлопса при двойной точности вычислений.

Несмотря на недавний анонс, у NVIDIA уже есть первый клиент на новые платы. Им стал Техасский современный вычислительный центр в Остине, который планирует запустить новую интерактивную систему удалённой визуализации и анализа данных, под именем Maverick, уже в январе будущего года.