Новости про микросхемы

TSMC анонсирует начало разработки 2 нм техпроцесса

Большие и мощные процессоры наконец-то начали выпускаться по 7 нм технологии, однако TSMC смотрит в будущее и уже готовится к разработкам 2 нм технологии.

На замену 7 нм процессу придёт 5 нм, а затем — 3 нм. Эти технологии уже активно разрабатываются как TSMC, так и Samsung. Но то, что тайваньская компания уже готовится к 2 нм поколению — просто удивительно.

TSMC
TSMC

Жуан Зишоу, старший директор TSMC, пояснил тайваньским СМИ, что новый 2 нм завод будет находится вместе с другими заводами будущих поколений в тайваньском Синьчжу. В этом городе расположен гигантский научный парк, в котором расположены 400 технологических компаний, включая TSMC.

Дорожная карта ячеек в микросхемах TSMC
Дорожная карта ячеек в микросхемах TSMC

Компания рассчитывает, что новый завод начнёт выпуск продукции к 2024 году.

TSMC готовит 7 нм EUV производство на этот квартал

Сайт DigiTimes сообщает, что компания TSMC близка к началу производства продукции по 7 нм EUV технологии. Источником информации выступил китайский ресурс Commercial Times.

По имеющимся данным, по новой технологии компания начнёт производить новое поколение флагманских SoC HiSilicon. Эта серия чипов Kirin 985 будет выпущена по 7 нм нормам с применением экстремальной ультрафиолетовой литографии. В TSMC называют этот процесс N7+.

В дополнение TSMC готовит усовершенствованную версию этого процесса, которая будет использована для выпуска процессоров A13, запланированных Apple для iPhone этого года. Этот процесс, названный N7 Pro, будет готов к массовому производству к концу II квартала.

Что касается 5 нм технологии, то первые микросхемы по этим нормам должны быть изготовлены компанией также в текущем году.

TSMC делает успехи в 5 нм технологии

Мир пятинанометровых устройств стал чуточку ближе благодаря компании TSMC, которая заявила об окончании разработки соответствующей инфраструктуры.

Новая 5 нм технология от TSMC будет выпущена со вторым поколением технологии экстремальной ультрафиолетовой литографии и глубокой ультрафиолетовой литографии. По этой технологии будут изготавливаться SoC нового поколения, устройства 5G и искусственного интеллекта, а также средства высокопроизводительных вычислений.

TSMC
TSMC

Согласно ранним прогнозам, переход на 5 нм позволит TSMC изготавливать ядра ARM Cortex-A72 в 1,8 раза плотнее, чем по 7 нм нормам, а также на 15% увеличить частоту.

Компания отмечает, что её новый техпроцесс будет готов к 2020 году, и это случится раньше, чем Intel сможет наладить выпуск 7 нм чипов. Первыми SoC, изготовленными по 5 нм нормам должны стать процессоры для iPhone.

Intel вернёт себе корону полупроводникового рынка

Долгие годы компания Intel была лидером полупроводниковой отрасли. Поступления от продажи её продукции всегда превышали таковые у конкурентов, однако в 2017 году вперёд вышла Samsung благодаря резкому скачку на рынке памяти.

Два года назад поступления Intel составили 61,7 миллиарда долларов, в то время как компания Samsung получила 65,9 миллиардов. В прошлом году поступления заметно возросли для обеих фирм. Так, Intel получила 69,9 миллиарда, а Samsung — 78,5 миллиарда.

Однако в текущем году аналитики из IC Insights прогнозируют другую картину. Доход Intel от продажи полупроводниковой продукции продолжит расти и достигнет 70,6 миллиардов долларов. В то же время Samsung резко потеряет доход до 63,1 миллиарда. Столь значительный спад связывают с 24% снижением рынка памяти, который потянет за собой весь рынок полупроводниковой продукции вниз на 7%. Таким образом, общемировой рынок полупроводников составит 468,9 миллиарда долларов, тогда как в 2018 году он достиг 504,1 миллиарда.

В своём отчёте аналитики обратили внимание только на двух лидеров, однако отметили, что из-за спада рынка DRAM и NAND, 20% снижение продаж ожидает такие компании, как Micron, SK Hynix и Toshiba.

AMD и NVIDIA на грани дефицита процессоров

Компании NVIDIA и AMD демонстрируют отличные результаты в поставках своих процессоров, но всё может измениться из-за проблем у TSMC, которая не по своей вине допустила массовый брак в производстве.

По данным тайваньских СМИ, компания TSMC остановила производство микросхем после получения импортных химикатов, которые оказались не такими чистыми, как должны быть для производства полупроводников. Это привело к «отравлению» пластин и неработоспособности отпечатанных микросхем.

Некоторые обозреватели сообщили, что компании пришлось приостановить производство по 16 нм и 14 нм процессам, которые используются NVIDIA и MediaTek в производстве GPU и AMD в заказных APU для Sony и Xbox.

TSMC
TSMC

Однако в TSMC сообщили следующее: «19 января TSMC выявила проблемы в отпечатках 12/16-нанометровой продукции на заводе Fab 14B. После расследования TSMC установила, что проблема была вызвана поставкой фоторезистентного материала. Эта поставка осуществлялась производителем с многолетним опытом и хорошей историей поставок на TSMC. Однако он поставил материалы, которые были заметно худшего качества, чем в предыдущих случаях».

После выявления проблемы компания прекратила производство и уведомила о ней всех заказчиков, кого это затронуло. Производитель предложил план по замене некачественных пластин.

«Учитывая нашу текущую загрузку мощностей на 12/16-нанометровой технологии, мы ожидаем, что большинство пластин может быть переделано в первом квартале 2019 года, а все оставшиеся могут быть переделаны во втором квартале».

Сообщается, что «отравленными» оказались порядка 10 000 пластин, однако реальный масштаб произошедшего ещё будет уточняться.

Всё это может плохо сказаться на поставках GPU для NVIDIA, в то же время GPU для Radeon VIII производится по 7 нм процессу, а значит, производству этой видеокарты ничего не угрожает.

IBM решила проблему производства микросхем менее 7 нм

Компания IBM опубликовала отчёт, в котором рассказала о решении проблемы производства микросхем с размером элементов менее 7 нм с помощью электризованного графена.

Данный метод позволяет размещать наноматериалы в предопределённой позиции без химического травления. В журнале Nature Communications исследователи IBM впервые описали применение электризованного графена для размещения элементов с точностью 97%. Данная публикация является результатом работы по программе под названием «7 нм и далее», которая началась четыре года назад.

Менеджер IBM Research-Brazil Матиас Штайнер заявил, что данный «метод пригоден для широкого спектра наноматериалов» и позволяет внедрять «интегрированные устройства с функционалом, который предоставляет уникальные физические свойства наноматериалов».

Микросхема IBM
Микросхема IBM

К примеру, можно интегрировать оптический датчик и эмиттер с определёнными волновыми свойствами, а при необходимости изменения свойств достаточно лишь заменить этот материал. Таким образом, будут изменены спектральные свойства оптоэлектрического устройства без изменения техпроцесса.

Дальнейшее развитие метода позволит собирать различные наноматериалы в разных местах, проводить процессы в несколько проходов и создавать интегральные чипы со встроенными световыми детекторами в различных окнах детекции одновременно.

Intel: проблемы 10 нм не коснутся 7 нм

Переход на 10 нм технологию производства доставил Intel массу проблем. Долгие годы компания отрабатывает этот техпроцесс, однако он до сих пор он даёт слишком много брака, когда речь заходит о высокопроизводительных решениях.

В ходе встречи с акционерами исполнительный директор Intel Брайан Крзанич в своём докладе коснулся и этой темы. Он заявил, что проблемы с 10 нм привели к тому, что AMD смогла вырваться в технологическом плане вперёд, однако переход на 7 нм не вызовет трудностей, поскольку это совершенно новая технология производства, к тому же компания поставит себе менее амбициозные цели.

Исполнительный директор Intel Брайан Крзанич
Исполнительный директор Intel Брайан Крзанич

«7 нанометров будет первым переходом к литографическим инструментам, которые затем откроют нам возможность к печати элементов намного, намного мельче, и намного проще. Так что это первый шаг, отделяющий 10 и 7 нанометров. Ещё одна вещь… из-за которой мы не сделали 10 нанометров, связана с намного более агрессивным фактором масштабирования. Вместо наших типичных 2,4, промышленность применяет масштабирование в 1,5 и 2 раза», — заявил Крзанич. Он уточнил, что переход на 10 нм должен привести к масштабированию в 2,7 раза, а это очень сильно осложняет задачу.

Сбудутся ли обещания, данные директором своим акционерам, мы узнаем только через пару-тройку лет.

TSMC представила технологию производства микросхем WoW 3D

Taiwan Semiconductor анонсировала внедрение технологии производства объёмных стековых чипов. Эта технология была названа пластина-на-пластине (Wafer-on-Wafer, или WoW). Также компания пообещала готовность 7 нм+ процесса в этом году и 5 нм процесса в следующем.

Современные микросхемы очень сложно уменьшать, поэтому переход на более тонкие техпроцессы занимает много времени. Однако промышленность требует увеличения числа транзисторов в чипе, и в TSMC придумали как удвоить их количество, применив стеки. Многослойные конструкции давно используются в микросхемах памяти, но только теперь TSMC стала готова предложить эту технологию для всех типов чипов.

Пластина микросхем
Пластина микросхем

Технология, созданная в партнёрстве с Cadence Design Systems, основана на существующих техниках чип-на-пластине-на подложке (Chip-on-Wafer-on-Substrate — CoWoS) и интегрированного разветвления (Integrated Fan-Out — InFO). По сути, технология WoW заключается в изготовлении двух обычных пластин микросхем, которые производятся перевёрнутыми, так, что сверху и снизу оказывается подложка. Затем традиционные пластины связываются сквозными проводниками по технологии through-silicon via (TSV), образуя пакеты.

Структура чипов TSMC WoW

Кроме технологии WoW в компании также подтвердили, что в этом году она будет готова выпустить усовершенствованный 7 нм процесс, в то время как 7 нм технология первого поколения будет доступна для массового производства. В следующем же году TSMC готовится выпустить 5 нм микросхемы.

Учёные стали на шаг ближе к терагерцевым чипам

Доктор Уриель Леви из Еврейского университета в Иерусалиме, вместе со своей командой создал концепт работающего терагерцевого микрочипа.

Сейчас перед создателями терагерцевых микрочипов стоят две проблемы: масштабируемость и самовоспламенение.

В статье, опубликованной в Laser and Photonics Review, Леви, совместно с профессором Иосифом Шиппиром создали оптическую (световую) технологию, которая объединяет скорость оптических коммуникаций с надёжностью и масштабируемостью электроники.

Доктор Уриель Леви из Еврейского университета в Иерусалиме
Доктор Уриель Леви из Еврейского университета в Иерусалиме

Оптические коммуникации включают в себя все технологии, использующие свет и передачу данных по оптических кабелям, включая Интернет, электронную почту, текстовые сообщения, телефонные звонки, информацию облачных ЦОД и т. п. Оптические коммуникации очень быстры, но в микрочипах они становятся слишком ненадёжны и трудны при массовом производстве.

Используя структуры Металл-Оксид-Нитрид-Оксид-Кремний (МОНОК) Леви со своей командой представили миру новую интегральную схему, которая использует технологии флеш-памяти в микрочипах. Если эта технология окажется успешной, она позволит обычным компьютерам с частотой в несколько гигагерц работать в 100 раз быстрее, а все оптические устройства станут ближе к Святому Граалю коммуникаций — терагерцевым чипам.

«Это открытие, — по словам доктора Леви, — может помочь заполнить „ТГц пробел“ и создать новые и более производительные беспроводные устройства, которые могут передавать данные на значительно больших скоростях, чем возможно сейчас. В мире хай-тек эта технология совершит переворот».

2 нм могут оказаться невыгодными

В ходе мероприятия группы Synopsys, прошедшего в Санта Кларе, Калифорния, прозвучали слова сомнения о возможности перехода полупроводниковой промышленности на 2 нм нормы производства в будущем, поскольку этот переход вряд ли будет экономически целесообразным.

Конечно, инженеры видят способы уменьшения транзисторов до 5 нм, 3 нм и даже 2 нм, но некоторые сомневаются в коммерческой эффективности этих переходов. Пока об этом говорить слишком рано, но повышение сложности и рост затрат на всё уменьшающиеся чипы может означать, что даже 5 нм процесс окажется экономически нецелесообразным.

Дорожная карта уменьшения размеров транзисторов в микросхемах
Дорожная карта уменьшения размеров транзисторов в микросхемах

«Прирост производительности в 16%, полученный при переходе на 10 нм, теряется при переходе на 7 нм по причине сопротивления в металлических дорожках. Энергосбережение, возросшее на 30% при 10 нм, при переходе на 7 нм возрастёт на 10—20%, а площадь кристалла, уменьшившаяся на 37% при 10 нм сократится на 20—30% с переходом на 7 нм», — заявил Пол Пензес, старший директор технологической команды Qualcomm.

«Площадь по-прежнему уменьшается на хорошую двухзначную величину, но скрытые затраты возрастают, означая, что реальные преимущества в стоимости и прочие улучшения начинают снижаться… И не ясно, что останется на 5 нм», — добавил Пензес, допустив, что 5 нм процесс может стать единственным улучшением после 7 нм.