Новости про исследования и наука и микросхемы

Суператомный материал позволит создать сверхбыстрые процессоры

Исследователи предлагают использовать новые суператомные материалы, самые быстрые из известных полупроводников, что должно позволить ускорить процессоры в тысячи раз.

В Колумбийском Университете Нью-Йорка занимаются исследованием возможности использования новых материалов, отличных от кремния. Кремниевые полупроводники довольно хороши. Используя их, люди полагаются на поток электронов для передачи данных. Однако это поток рассеянный, много энергии теряется в тепло, что замедляет передачу данных из точки А в точку В.

Милан Делор, учёный химического отдела Колумбийского Университета

Милан Делор, руководитель группы исследований, предлагает использовать новый, более эффективный полупроводник Re6Se8Cl2. Этот суператомный материал характерен тем, что носителем информации являются не электроны, а экситоны — квазичастицы, которые не несут заряда, а несут возбуждённое состояние атомов. Экситоны движутся медленнее электронов в кремнии, однако это движение строго направленное, а потому частицы пересекают ту же дистанцию быстрее, причём быстрее в несколько сотен и даже тысяч раз.

Однако у материала есть одна проблема — он очень дорог: рений является одним из самых редких металлов на Земле и в промышленности его получают, улавливая пыль при выплавке молибдена.

Срок ожидания чипов вырос до двадцати недель

Аналитики из Susquehanna Financial Group провели исследование времени, которое проходит между заказом чипов и их доставкой, и оказалось, что за последнее время оно заметно выросло.

То, что мировая микроэлектроника находится в кризисе — ни для кого не секрет. Некоторые компании ожидают, что скоро ситуация с дефицитом улучшиться, однако аналитики считают иначе. В настоящее время дефицит микросхем привёл к тому, что заказчики заключают контракты на производство как можно раньше, в результате время ожидания заказанных микросхем выросло до 20,2 недель. Таким образом, микросхемы, которые заказаны сегодня, поступят только в январе 2022 года.

График изменения времени поставки чипов

При этом время ожидания сильно отличается в разных сегментах. К примеру, самым пострадавшим оказался сектор микроконтроллеров, которые нужно ожидать 26,5 недель. А вот чипы управления питанием поставляются даже быстрее, чем раньше, что хоть немного скрашивает эту новость.

Индустрия ожидает, что дефицит продлится и в 2022 году, и может просуществовать в некоторых отраслях аж до конца 2023 года.

Исследователи разрабатывают инъецируемый чип

Исследователи из Школы инженерии и прикладных наук Колумбийского университета разработали самую маленькую одночиповую систему, которая является полноценно работающей электрической схемой.

Имплантируемый чип, производимый TSMC, имеет размеры песчинки, а рассмотреть его можно лишь в микроскоп. Его объём менее 0,1 мм3, а вместо традиционного радиочастотного метода бесконтактного питания и связи, команда полагается на ультразвук.

Шприц для инъекций микросхем

Отмечается, что традиционная имплантируемая электроника имеет куда больший объём, зачастую состоит из разных микросхем, пакетов, проводов и внешних модулей связи. Кроме того, многие из них для питания используют батареи.

В качестве прототипа команда исследователей представила чип, вводимый в тело человека гиподермической иглой. Этот чип способен измерять температуру тела. А вот будущие варианты смогут осуществлять мониторинг других параметров, таких как кровяное давление, сатурацию кислорода и уровень глюкозы.

Прототип чипа внутри иглы для инъекций

Кен Шепард, руководитель исследования, заявил, что его команда хотела бы увидеть, как широко удастся раздвинуть границы применения столь миниатюрных устройств. «Это новая идея для „чипов-как-систем“, это самостоятельный чип, без ничего вокруг, это полностью функционирующая электронная система», — отметил Шепард.

TSMC заявила о прорыве в разработке 1 нм чипов

Последние годы учёные единогласно заявляют, что нынешняя электронная промышленность приблизилась к своему пределу уменьшения.

Безусловно, производители ищут выход из этой ситуации, пробуют различные материалы, которые позволят им и дальше сокращать размеры транзисторов. И вот, вслед за IBM, которая анонсировала 2 нм техпроцесс, крупнейший мировой производитель микросхем, TSMC, при поддержке Национального университета Тайваня и Массачусетского института технологии, объявил о разработке материала под названием полуметаллический висмут, который должен обеспечить возможность производство чипов с элементами в 1 нм в будущем.

По мере уменьшения размеров элементов производители сталкиваются с растущим влиянием их сопротивления и снижением силы тока на контатных электродах, которые отвечают за подачу питания. Согласно проведённому исследованию, использование полуметаллического висмута в качестве контактных электродов транзисторов может значительно снизить сопротивление и повысить силу проходящего тока. И всё это на контактах толщиной в 1 атом.

Пока технология находится на экспериментальном этапе, так что до коммерческой реализации 1 нм микросхем придётся подождать несколько лет.

Исследователи предложили материал для создания транзисторов меньшего масштаба

Кремний, как полупроводник, нашёл широкое применение в производстве микросхем. Он используется уже несколько десятилетий, но это не может длиться вечно.

Кремниевые транзисторы приближаются к теоретически минимальному размеру, и им нужна замена. Одной из таких альтернатив стало вещество арсенид индия-галлия (InGaAs). Его предлагается применять для создания микросхем с транзисторами меньшего, чем доступно сейчас, размера. К тому же эти чипы будут более энергоэффективными. Об этом сообщается в исследовании Массачусетского института технологий.

Ранее учёные сталкивалась с проблемой, при которой с уменьшением масштаба транзистора, изготовленного из InGaAs, резко падала производительность. Проблема заключается в феномене под названием «оксидная ловушка». Её суть состоит в том, что электроны застревают при прохождении через транзистор.

Исследователи решили изучить влияние частоты транзистора на снижение его производительность, и нашли частоту, при которой электроны беспрепятственно проходят по транзистору. Оказалось, что производительность наномасштабных транзисторов InGaAs деградирует на низких частотах, однако на частоте 1 ГГц и выше они работают без каких-либо проблем.

Автор исследования, Сяовеи Цай отметил: «Когда мы работаем с этими устройствами на действительно высокой частоте, мы замечаем, что производительность действительно хороша. Она находится на одном уровне с кремниевой технологией».

TSMC вкладывает в разработку 2 нм техпроцесса

Мировой лидер полупроводниковой продукции, компании TSMC, успешно развивает и модернизирует свои технологии. Как известно, в ближайшее время компания начнёт выпуск микросхем по 5 нм нормам и уже ведёт активную подготовку к опытному 3 нм производству.

При этом TSMC продолжает работать на перспективу, финансируя исследования 2 нм технологии. Сообщается, что компания вложила 16 миллиардов долларов в эти исследования.

Блины с микропроцессорами

Ожидая начать массовое производство по 3 нм процессу в начале 2022 года, компания активно готовит и следующий этап. Для этого она приобрела большое количество крайне дорогих машин для экстремальной ультрафиолетовой литографии. И эти инвестиции не будут отбиты в текущем году.

Сейчас 2 нм находится на этапе разработки. Но в столь тонких технологиях, очень сложно делать прогнозы готовности, а потому, сроки массового применения новой технологии пока не называются. Яркий пример тому — Intel, которая до сих пор не может полноценно перейти на 10 нм процесс.

В Эйндховене создали светоизлучающий кремниевый сплав

Исследователи из Университета Технологии города Эйндховен смогли создать новый материал, который обладает светоизлучающими свойствами. По сути, они разработали Святой Грааль фотоники.

Эта разработка является важнейшим звеном технологии, которая позволит заменить поток электронов в кремниевом микропроцессоре световым потоком, исключив электрическое сопротивление и избавившись от тепла, выделяемого из-за него.

Современные процессоры ограничены теплом, которое они выделят «по причине сопротивления, оказываемого на электрон при его прохождении по медным проводникам, связывающим транзисторы в чипе». Фотоника решает эту проблему, поскольку фотоны не получают сопротивления при своём движении. Главным преимуществом фотоники является не столько отсутствие тепловыделения, а то, что они позволят улучшить коммуникацию внутри чипов и между чипами в 1000 раз.

Оборудование для выращивание гексагональных кристаллов кремния и сами эти кристаллы

Исследователи отметили, что их достижение стало результатом кропотливой работы, длившейся 50 лет. Вместе с коллегами из университетов Йены, Линца и Мюнхена они объединили кремний и германий в гексагональные структуры, способные излучать свет. Ключевой техникой для этого стало использование гексагональных шаблонов и применение чистейших кристаллов, из доступных на сегодня. Благодаря этим структурам сплав «излучает свет крайне эффективно», — говорится в отчёте, опубликованном в журнале Nature.

Если дальнейшие работы будут идти по плану, то уже к концу этого года мы увидим работу первого кремниевого лазера.

Samsung создала прототип 3 нм транзисторов GAAFET

Компания Samsung планирует к 2030 году стать мировым лидером в области производства полупроводников, обойдя таких конкурентов как TSMC и Intel.

Чтобы достичь этой цели, компании нужно уже сегодня прикладывать все усилия. И у корейского гиганта уже есть первые результаты. Она представила прототипы первой 3 нм структуры за пределами FinFET, которые она назвала GAAFET. По ожиданиям компании, 3 нм процесс GAAFET предложит 35% увеличение плотности, 50% снижение энергопотребления и 35% прирост производительности, по сравнению с 5 нм процессом.

Сравнение структур транзисторов в микросхемах

Компания сообщает, что 3 нм процесс GAAFET будет готов к массовому производству уже в 2021 году, весьма амбициозно. Если Samsung это удастся, то она сможет предложить более совершенный процесс производства, чем TSMC, уже в следующем году.

Фотография структуры GAAFET

Технология GAAFET является эволюцией применяемой сейчас технологи FinFET. Она предлагает использовать конструкции с четырьмя затворами, которые окружают каналы транзистора и снижают токи утечки. Именно поэтому технология называется Gate-All-Around, с окружающим транзистором.

Учёные стали на шаг ближе к терагерцевым чипам

Доктор Уриель Леви из Еврейского университета в Иерусалиме, вместе со своей командой создал концепт работающего терагерцевого микрочипа.

Сейчас перед создателями терагерцевых микрочипов стоят две проблемы: масштабируемость и самовоспламенение.

В статье, опубликованной в Laser and Photonics Review, Леви, совместно с профессором Иосифом Шиппиром создали оптическую (световую) технологию, которая объединяет скорость оптических коммуникаций с надёжностью и масштабируемостью электроники.

Доктор Уриель Леви из Еврейского университета в Иерусалиме

Оптические коммуникации включают в себя все технологии, использующие свет и передачу данных по оптических кабелям, включая Интернет, электронную почту, текстовые сообщения, телефонные звонки, информацию облачных ЦОД и т. п. Оптические коммуникации очень быстры, но в микрочипах они становятся слишком ненадёжны и трудны при массовом производстве.

Используя структуры Металл-Оксид-Нитрид-Оксид-Кремний (МОНОК) Леви со своей командой представили миру новую интегральную схему, которая использует технологии флеш-памяти в микрочипах. Если эта технология окажется успешной, она позволит обычным компьютерам с частотой в несколько гигагерц работать в 100 раз быстрее, а все оптические устройства станут ближе к Святому Граалю коммуникаций — терагерцевым чипам.

«Это открытие, — по словам доктора Леви, — может помочь заполнить „ТГц пробел“ и создать новые и более производительные беспроводные устройства, которые могут передавать данные на значительно больших скоростях, чем возможно сейчас. В мире хай-тек эта технология совершит переворот».

Графеновые чипы могут никогда не стать массовым продуктом

В новом поколении процессоров, изготовленным по 10 нм нормам, компания Intel в двух нижних слоях микросхемы планирует использовать кобальт.

Однако обозреватели считают, что в будущем большинство производителей продолжит использовать медные проводники и интерконнекты. Многие годы считалось, что для дальнейшего уменьшения производственного процесса потребуются новые материалы. В то же время IBM опубликовала презентацию, в которой считает медь достаточным проводником в микросхемах до 5 нм процесса, и даже ниже.

Также компания Aveni выяснила, что щелочное травление позволяет расширить использование меди до 3 нм, и, возможно, данный подход будет применим до самого конца технологии CMOS.

В компании убеждены, что щелочная гальванизация делает уход от меди бессмысленным, поскольку кобальт при этом процессе не разрушается. «Одной из проблем с кислотными химикатами является частый протрав подлежащего барьерного слоя. Со щелочными химикатами у вас не возникает эта проблема растрава подслоя», — заявил в интервью технический директор Aveni Фредерик Райнал.

Найден полупроводниковый материал — заменитель кремния

Последние годы производители полупроводниковых устройств остаются на одном технологическом процессе более двух лет, ставя под сомнение известный принцип Гордона Мура.

Проблема в том, что им становится всё труднее уменьшать размеры элементов традиционными способами. Много лет назад был найден идеальный полупроводниковый материал, доступный в неограниченном количестве — кремний. Окисляясь, он создаёт слой диоксида, который уже является диэлектриком, изолируя полупроводниковые цепи.

Теперь учёные из Стэндфордского университета нашли два новых полупроводниковых материала: диселенид гафния и диселенид циркония, которые не только близки к кремнию по многим свойствам, но и решают самую сложную на сегодня задачу — позволяют создавать меньшие элементы. А благодаря их высоким изоляционным свойствам исследователи смогли создать работоспособные цепи шириной всего три атома. В результате им требуется меньше энергии для переключения, что является главным преимуществом.

По словам Эрика Попа, одного из исследователей, «Кремний не исчезнет. Но для потребителей это значит большую продолжительность автономной работы и большую сложность и функциональность при интеграции этих полупроводников».

Звучит отлично, но до реализации технологии в промышленности пройдут долгие годы.

Забудьте о 3D транзисторах — встречайте 4D

Компания Intel несколько лет назад представила технологию Trigate или 3D транзисторы. Однако учёные из университета Пердью пошли дальше, представив 4D транзистор. Правда, удивляться пока рано.

Исследователи из университета Пердью заявили об успешной замене кремния в транзисторах и открытия пути создания намного меньших структур микросхем, чем позволяют кремниевые полупроводники.

Команда учёных применила арсенид индия-галлия, который в будущем станет важнейшим материалом для производства полупроводников с размеров элементов меньше 10 нм. Изготовленный в университете прототип был сделан по 20 нм техпроцессу.

Согласно объяснению Педэ Е (Peide Ye), профессора по электрике и компьютерному инжинирингу, три проводника арсенида индия-галлия размещаются друг над другом, при этом прогрессивно укорачиваясь к верху. Полученное сужающееся пересечение имеет вид ёлки. А значит, почему бы не назвать получившуюся структуру 4D транзистором? Вот его пояснение:

«Один дом может вмещать множество людей, но чем больше этажей, тем больше и людей, то же самое и с транзисторами. Увеличение их слоёв приводит к большему току и более быстрым операциям для высокоскоростных вычислений. Эта разработка добавляет полностью новое измерение, которое я назвал 4D». Но попридержите коней. Ещё слишком рано радоваться.

Хотя арсенид индия-галлия, на самом деле, довольно интересный материал для уменьшения элементов чипов, как и отметил Е, эта технология покажет себя лишь когда транзисторы дойдут до 10 нм. В любом случае, будет ли подобный подход применим в будущем, мы знаем, что Закон Мура получил право на дальнейшее существование.

IBM хочет заменить кремний на углеродные нанотрубки

Учёные из Исследовательского Центра им. Т. Дж. Ватсона (T.J. Watson Research Center), принадлежащего IBM, утверждают, что смогли разработать принципиально новую технологию производства микросхем. Такое сообщение появилось на сайте Nature.

Достигнутый прорыв основан на углеродных нанотрубках, которые объединяют атомы углерода, свёрнутые в цилиндры. После помещения маленьких молекул в раствор мыльной воды, учёные увидели начало самосборки, которая создаёт текстурированный массив нанотрубок. Этот массив можно использовать для создания микросхем с плотностью более двух порядков большей, чем создавались раньше.

Карбоновые нанотрубки одновременно меньше и быстрее материалов, применяющихся сейчас при изготовлении чипов, и сделанное открытие позволит производителям массово изготавливать миниатюрные структуры. Последнее время рост тактовых частот процессоров и плотности их техпроцессов заметно снизился, так что, если производители и дальше заинтересованы в сохранении закона Мура, то у них есть отличная возможность применить эту технологию.

В любом случае, в потребительских продуктах новая технология вряд ли появится до начала нового десятилетия, поскольку исследователям по-прежнему нужно найти способ дальнейшей обработки углеродных нанотрубок для полного раскрытия их потенциала в качестве полупроводников.